Scope Splitting and Cumulativity

Marcelo Ferreira

Universidade de São Paulo

August 14, 2007

Universidade de São Paulo

Image: A math

Marcelo Ferreira Scope Splitting and Cumulativity

Complex Cardinal Quantifiers

- (1) John kissed at least three girls.
- (2) John kissed exactly three girls.
- (3) John kissed fewer than three girls.
- (4) At least four boys kissed at least three girls.
- (5) At most four boys kissed more than eight girls.

Two Theories

(6) John kissed at least three girls.

$$\checkmark GQ: |\{x : girl'(x)\} \cap \{x : kissed'(j,x)\}| \ge 3$$

 $\checkmark PL: \exists X : |X| \ge 3 \land girls'(X) \land kissed'(j,X)$

GQ: Barwise and Cooper (1981) **PL**: Link (1983) and many others after him

< A

PL looks better

Cumulative Readings

(7) At least four boys kissed at least three girls. # GQ: $|\{x : boy'(x)\} \cap \{x : x \text{ kissed at least 3 girls}\}| \ge 4$ OR $|\{x : girl'(x)\} \cap \{x : \text{at least 4 boys kissed }x\}| \ge 3$

Universidade de São Paulo

< 17 ▶

Marcelo Ferreira

GQ looks better

Non-Increasing DPs

(8) John kissed exactly three girls. $\checkmark GQ: |\{x : girl'(x)\} \cap \{x : kissed'(j, x)\}| = 3$ $\# PL: \exists X : |X| = 3 \land girls'(X) \land kissed'(j, X)$

< 行い

Marcelo Ferreira

Neither looks good

Cumulativity with Non-Increasing DPs

$$PL: \quad \exists X \exists Y : |X| = 4 \land |Y| = 3 \\ \land boys'(X) \land girls'(Y) \land kissed'(X, Y)$$

Universidade de São Paulo

Marcelo Ferreira

Fixing PL: Maximality

- (10) John kissed exactly three girls. $max\{n : \exists X : |X| = n \land girls'(X) \land kissed'(j, X)\} = 3$
- (11) $\llbracket exactly three girls \rrbracket = \lambda P. max\{n : \exists X : |X| = n \land girls'(X) \land P(X)\} = 3$

Image: A math a math

Frank Enlithing and Com

Marcelo Ferreira

Fixing PL?: Maximality and Cumulativity

(12) Exactly three boys kissed exactly two girls. $max\{n : \exists X : |X| = n \land boys'(X) \land max\{n' : \exists Y : |Y| = n' \land girls'(Y) \land kissed'(X, Y)\} = 2\} = 3$

Marcelo Ferreira

Interim Conclusion

(13) Exactly three boys kissed exactly two girls."The number of boys who kissed girls is 3 and the number of girls kissed by boys is 2."

Scope Splitting and Cumulativity

Interim Conclusion

- (13) Exactly three boys kissed exactly two girls."The number of boys who kissed girls is 3 and the number of girls kissed by boys is 2."
 - When interpreting these sentences, we need access to the relation boys who kissed girls.

Interim Conclusion

- (13) Exactly three boys kissed exactly two girls."The number of boys who kissed girls is 3 and the number of girls kissed by boys is 2."
 - When interpreting these sentences, we need access to the relation boys who kissed girls.
 - The challenge is how to access this relation without violating compositionality.

Previous Proposals: Scha 1981

- There are binary determiners, such as *exactly3-exactly2* and binary nouns, such as *boys-girls* and binary quantification.
- Problem: there is no independent evidence for such unorthodox syntax.

Previous Proposals: Krifka 1999; Landman 2000

 Complex algorithms at the semantics-pragmatics interface that aggregate maximality claims to truth-conditions with the help of alternative semantics.

Scope Splitting and Cumulativity

Previous Proposals: Krifka 1999; Landman 2000

- Complex algorithms at the semantics-pragmatics interface that aggregate maximality claims to truth-conditions with the help of alternative semantics.
- My point: There is no need for such radical moves, once we acknowledge that Complex Cardinal DPs have complex internal structures.

The Internal Structure of Cardinal DPs

Hackl (2000): complex syntax for complex cardinal DPs

Universidade de São Paulo

< □ > < □ >

Marcelo Ferreira

Degree Operator takes Sentential Scope

(15) John kissed exactly 3 girls.
 [s exactly 3 [s λd [s John kissed [DP Ø [DegP t_d [Deg' Deg [NP girls]]]]]
 "The max. number d such that John kissed d girls is 3"

< 🗇 🕨

Scope Splitting and Cumulativity

Degree Operator Movement and Cumulativity

- (16) Exactly three boys kissed exactly two girls
 [s ex. 3 [λd' [ex. 2 [λd [d' boys kissed d girls]]]]]
 - Not Correct! "3 is the max. n such that n boys kissed exactly 2 girls"
 - Incidentally, this is what Beck and Sauerland (2000:361) propose.

< 🗇 🕨

Degree Operator Movement and Cumulativity

- (17) Exactly three boys kissed exactly two girls [s ex. 3 [s ex. 2 [$_{\alpha} \lambda d$ [$\lambda d'$ [d' boys kissed d girls]]]]]
 - Syntactic note: we should allow the moved operators to stack on top of their lambda binders (see Sauerland (1998) and also Nissenbaum's (1998) analysis of parasitic gaps.)
 - Semantic note: α denotes a degree relation, and it is possible to derive the cumulative interpretation based on the denotations of α, exactly 3, and exactly 2.

Degree Operator Movement and Cumulativity

(18) Exactly three boys kissed exactly two girls [s ex. 3 [s ex. 2 [$_{\alpha} \lambda d$ [$\lambda d'$ [d' boys kissed d girls]]]]

(19)
$$\begin{split} \llbracket S \rrbracket &= 1 \ \textit{iff} \\ \llbracket \text{exactly } 2 \rrbracket (\lambda d. \exists d' : \llbracket \alpha \rrbracket (d) (d')) \\ \& \\ \llbracket \text{exactly } 3 \rrbracket (\lambda d'. \exists d : \llbracket \alpha \rrbracket (d) (d')) \end{split}$$

< 1[™] >

Scope Splitting and Cumulativity

The Cumulative Operator

 To complete the implementation, all we need is a "lifted" version of a cumulative operator

(20)
$$[CML] = \lambda R.\lambda Q_1.\lambda Q_2. Q_1(\lambda x.\exists y : R(x)(y)) \& Q_2(\lambda y. \exists x : R(x)(y))$$

< A

Scope Splitting and Cumulativity

A more General Version

Non-Lexical Cumulativity: Beck and Sauerland (2000), but *cf.* Kratzer (2004)

- (21) The (two) women wanted to marry the (two) men.
- (22) Jim and Frank want to marry Sue and Amy (respectively)

< 17 ▶

Scope Splitting and Cumulativity

A more General Version

(23) The (two) women wanted to marry the (two) men.
[the women [the men [
$$_{\alpha} \lambda x$$
 [λy [x wants to marry y]]]]]
[[the women]] = $\lambda P. P(\sigma(women))$
[[the men]] = $\lambda P. P(\sigma(men))$
[[CML]] = $\lambda R.\lambda Q_1.\lambda Q_2.$
 $Q_1(\lambda X.\forall x < X \exists y \exists Y \exists Z : y < Y \& Y \in Z \&$
 $Z \in min(Q_2) \& R(x)(y)) \&$
 $Q_2(\lambda Y.\forall y < Y \exists x \exists X \exists Z : x < X \& X \in Z \&$
 $Z \in min(Q_1) \& R(x)(y))$
 $P \in min(Q) \leftrightarrow P \in Q \& P \neq \emptyset \& \neg \exists P' \in Q : P' \subset P$

A B +
 A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Universidade de São Paulo

Scope Splitting

(24) You need to write at most five papers (to get promoted).
[s at most 5 [λd [you need to write d papers]]]
"There is no d greater than 5 such that you need to write d papers" (Hackl 2000)

< 1[™] >

Universidade de São Paulo

- ► The sentence is about a minimal requirement.
- No specific papers should be written.

Scope Splitting and Cumulativity

- (25) You need to donate at most twelve books to at most five public schools (to be eligible for tax deduction).
 - ► The sentence is about a minimal requirement.
 - No particular school should be given a particular number of books.
 - ► No specific books or schools mentioned in the law.

Scope Splitting and Cumulativity

(26) You need to donate at most twelve books to at most five public schools (to be eligible for tax deduction).

[at most 5 [at most 12 [λd [$\lambda d'$ [you need [PRO to donate *d* books to *d'* schools]]]]]

"There is no d greater than 12, such that you need to donate d books to public schools and there is no d' greater than 5, such that you need to donate books to d' public schools".

Conclusion

A complex syntax for cardinal DPs provides the basis for a fully compositional analysis of cumulative readings with non-increasing DPs that does not require radical maneuvers either at the syntax-semantics or the semantics-pragmatics interfaces.

▶ This research is supported by **FAPESP**, grant 05/03140-1

・ロト < 回 > < 目 > < 目 > 、 目 、 の へ ()

Marcelo Ferreira Scope Splitting and Cumulativity Universidade de São Paulo